关于聚酯拉伸形变的基本特点由于聚酯的玻璃化温度较高,通过骤冷可使得结晶度近于0,所以它与聚丙烯的拉伸采用的工艺温度和特点不同,是在无定型状态拉伸,工艺温度是在 tg~ tg +15 ℃,而不在晶态拉伸。因此,有关拉伸时球晶变形和破坏的理论,在聚酯双向拉伸制膜工艺中不适用,若厚片中含有球晶,因拉伸的条件只是适于无定形的,所以一般不会使它变形。
拉伸形变过程是放热过程。拉伸常伴着分子链的取向,有序程度增加,因此拉伸后的聚酯结晶时,诱导期很短,若不急冷,则其结晶度将上升。拉伸使分子链伸展和解缠,同时拉伸过程中还存在着热运动,使伸展链回复为卷曲的过程(回缩),当回缩的速度与拉伸形变的速度相等时,实际上对分子链没有拉伸作用,此时宏观上只是拉薄、拉细而已。
薄膜在加工的过程中会被取向,一般分为横向和纵向,因加工工艺和参数的不同,取向也不同。例如,吹膜既有纵向牵引,又有横向吹胀,相对纵横向取向比较平衡,两个方向上力学性能也相对均衡。而对于流延,只有纵向的牵引,而没有横向的吹胀,因此纵向取向大于横向,两个方向上的力学性能就有明显差异,例如纵向拉力大,但撕裂强度就很低。单向拉伸薄膜(MDO)是利用辊之间的速度差对薄膜进行进一步纵向拉伸,从而提高薄膜的挺度、透明度,以及某些力学性能,此时纵向的取向远大于横向。如果在此基础上再进行横向拉伸,就是我们通常说的双向取向了(BO)。双向拉伸可以用一个步骤完成,俗称同步拉伸;也可用两个连续的步骤完成,俗称异步拉伸。如果在两个方向的取向是相等的,蕞终得到的薄膜在性能上是各向同性的;如果在一个方向的取向大于另一个方向的取向,则薄膜在性能上是各向异性的。
为了获得有效的取向,聚合物蕞好在低于熔点的温度下进行拉伸,同时,拉伸时应具备足够的热量,使得分子可以运动。温度越高,分子的运动速度越快,松弛时间越短,实际产生的取向则越少。拉伸以后,薄膜将被冷却定型获得热稳定性。理想状态是,在拉伸的分子松弛以前通过冷却获得足够的取向。
黑PEN膜